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EFFECT OF LONGITUDINAL DISPERSION ON THE DYNAMIC CHARACTERISTICS OF A 

CONTINUOUS-FLOW CHEMICAL REACTOR* 

IU. P. GUPALO, V. A. NOVIKOV, and Iu. S. RIAZANTSEV 

An approximate solution is constructed for the two-point boundary 

curring in the simulation of a continuous-flow isothermic reactor 

mixing. The derived solution is used for analyzing the effect of 

ses on the efficiency of a reactor working unsteady conditions. 

A number of theoretical and experimental investigations had shown that 

value problem oc- 

with longitudinal 

transport proces- 

the use of period- 
ic modes in continuous-flow chemical reactors may result in considerable change of time 
averaged values of the degree of transformation, of output and selectivity in comparison with 

steady operation values (e.g., /l-8/). 
Deviation of mean dynamic characteristicsofa reactor from their respective steady values 

is due to the nonlinearity of the considered systems, and depends on reactor characteristics, 

particularlyonthe intermixing intensity and chemical transformation kinetics. 

A numerical analysis was carried out in /9/ of unsteady modes of an isothermic reactor 

with longitudinal intermixing with certain specific values of controlling parameters. It was 

established that longitudinal intermixing increases the unsteady shift (Editor's note: 

definition given at the very end of Sect.1) which for the selected numerical values of con- 

stants reaches its maximum in a reactor with perfect intermixing, and is minimum in a perfect 

displacement reactor. In the present paper the effect of kinetics and diffusion on the un- 

steady shift of transformation rate in the reactor is analyzed in greater detail. It is 
established that the fundamental conclusion reached in /9/ is not universal. 

1. Statement of the problem. Let us consider the one-dimensional model of a 

continuous-flow isothermic reactor with longitudinal intermixing in with a single irreversible 

chemical reaction takes place. In dimensionless variables the unsteady equation for concentra- 

tion and the boundary and initial conditions may in this case be written in the form 

&=$$-;-f(c)) 5 =o, -~~+c=q(t), x=1, -go, t=o, c(2,0)=Cj*(Z) (1.1) 

czL X 

co ’ 
"=T, t+, p+, f(c,=q, ct=z 

where X is a space coordinate, (O<X.<L); L is the reactor length, T is the time, C the 
concentration of the reagent in the reactor, C;,is the initial concentration distribution, 

cf is the reagent concentration at entry to the reactor and CO the steady value of concentra- 
tion, C,, uis a feeding velocity.of the reagent, D is the effective diffusion coefficient, 

F(C) defines the dependence of the chemical reaction rate on the reagent concentration, 
and P is the P&let number. We also introduce the quantity 5 = (C,- C)/C, to represent the 
degree of reagent transformation. 

The object of this analysis is to compare the time averaged degree of reagent tranSfOrma- 

tion when the reacting substance concentration at the reactor intake is periodically varied, 
with that in a reactor under steady operation conditions which corresponds to concentration 

at the reactor intake averaged over a period of work at various P&let numbers and forms of 

function f (c). 
We define the relative effectiveness of the periodic operation mode to that of thesteady 

mode by the magnitude of mean divergence of the degree of transformation in the periodic mode 

to that in the steady mode. This divergence is called below, the unsteady shift. Let us 

consider several particular cases. 

2. Reactors with perfect mixing and perfect through-put. The equations and 

boundary conditions (1.1) for models of perfect intermixing (P = 0) and perfect through-put 

(P = co) are, respectively, of the form 

dcldt m= c,(t) - c - f(c), P = 0 I $++=-j(c,, c(O,t)=“,(t), P=cc (2.1) 

Let us consider a second order reaction at small harmonic perturbations of concentration 

at the reactor intake, i.e. 
cf = 1 + .sg, sin ot, f(c) = lp? 
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(2.2) 
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where E is the small parameter, O<E<l! the time averaged dimensionless concentration at 

the reactor intake is equal unity (steady value), and k is the dimensionless constant of the 

reaction rate. 
Using the method of small perturbations /lo/ for solving Eqs. (2.1) for the unsteady 

shift of the mean degree of reagent transformation with an accuracy to second order terms 

with respect to E, in the quasisteady approximation (o< 1) we obtain 

(2.3) 

(2.4) 

where (&,) is the time averaged degree of reagent transformation in an unsteady periodic 

mode, and E, is the degree of transformation in the steady mode. 

Dependence of the unsteady shift in perfect intermixing and perfect through-put reactors, 

(2.3) and (2.4), respectively, are shown in terms of the dimensionless constant k of chemical 

reaction rate in Fig.1, where g= Egl. Both curves (1 for P=O and 2 for p=co) have 

their maxima for k = 0.5 and intersect at k = 2. 
Thus, depending on the intensity of the second order chemical reaction, the longitudinal 

diffusion in a continuous chemical reactor may increase (for k> 2 as well as decrease (for 

k< 2) the magnitude of the nonlinear shift of the transformation degree in the unsteady mode. 

I I 
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Fig.1 
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Fig.2 

Note that the data in /9/ relate to k = 12, i.e. to the region of k> 2. 

3. Reactor with longitudinal dispersion. Let us consider problem (1.1) at 

finite P&let numbers. Unlike in Sect.1 where the approximate analytic solution is based 

on the assumption of small unsteady perturbation of input concentration, here we take the 

chemical intensity, i.e. f (C) = Efl (C) = 0 (E), E< 1 as the small quantity. As previously, 

the analysis is restricted to quasisteady periodic perturbations, and function Cf (t) is 

assumed to change little during the time comparable to the characteristic time of stay in the 

reactor. We shall consider the term in (1.1) which defines the chemical transformation, as 

the regular perturbation, and seek for problem (1.1) an approximate quasisteady solution of 

the form /lo/ 

C (I, t) -= Co (G t) + EC1 (X, 1) -t E2 Cg (2, t) + . . . (3.1) 

It is assumed here and in what follows that the dependence of solution on t is parametric. 

Substituting (3.1) into (1.1) with a/& = 0 and, then successively determining the 

terms of series (3.1) with an accuracy to terms of second order of smallness, for the quasi- 

steady concentration distribution in the reactor we obtain 

C (5, t)=C,_Efl (cf) z+ 1 _eTl-*)] + E2fl (C,)fl,(ct) [ e-e- 3eZl-X) - 2 + 2x- ?e-P(*T +=-p(l-X) + $1 
(3.2) 

Passing to limit, from (3.2) we obtain for the concentration 
(P = 0) and perfect through-put (P = co) the expressions 

C = Cf - Ef1 (Cf) + E% (Ct)f1' (Cf), 1' = 0 

C (I) = Cf - 41 (cr) -I- E2fl (Ct) A’ CC/) f , 1’ = c-2 

These expressions can also be obtained directly from solutions of 

indicated limit cases. 

in perfect intermixing 

(3.3) 

(3.4) 

respective problems for the 

Using (3.2) we determine the time averaged degree of reagent transformation in the un- 

steady periodic mode and compare it with that in the steady mode. For the unsteady shift of 
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the reagent transformation degree we can obtain 

(AE: = e [(/I (c,)) --fl ((c,))] -t $ {z iCcr>)-- <z (C,))} Q(p), I! (1’) = q+ + f f & (3.5) 

where, as previously, angle brackets denote averaging over the period of change of function 

ct (Q. It follows from (3.5) that the unsteady shift of the mean transformation degree <AU 
is in the first approximation with respect to E independent of the longitudinal diffusion in- 

tensity, i.e. it does not change with the change of the PQclet number o:< P Q m. Dependence 

of the quantity <AQ on the longitudinal intermixing intensity becomes apparent only in the 

second approximation with respect to E, and is determined by function 0 (P) whose curve 

appears in Fig.2; it is monotonically decreasing and its limit points Q(0) = 1 and n(m) ='I, 

correspond to limit cases of the considered model. The type of dependence of the unsteady 

shift (A51 on the P&let number is determined by the sign of the derivative d<AE)!dP. Since 

the inequality dQ/dP<O is satisfied for all P, the sign of derivative d(AE) I dP is 
determined by the sign of the expression in braces in (3.5) which, in turn depends on the 

form of function ft(c) and on the character of variation of the input concentration c,(t). On 

the basis of (3.5) it is possible to conclude that, when the inequality 

qg (c,(t)) > 0 (3.6) 

is satisfied for all t, the derivative d <Ag)i dP is positive and the unsteady shift 

increases as the P&let number is increased. When the inequality of opposite sign to (3.6) 

holds, the unsteady shift decreases as the Pdclet number is increased. 

The derivative in (3.6) may generally change its sign with time. It is then necessary 

to use formula (3.5) for determining the effect cf longitudinal dispersion on the unsteady 

shift, taking into account the specific form of functions fl(c) and Cf Cd. The nature of the 
longitudinal dispersion effect on the magnitude of the unsteady shift is, thus, determined 

by the third derivative of the squared function that specifies the chemical reaction engineer- 

ing. 
Let us consider, as an example, a reaction of order ~,h =~ h-,cY. The criterion (3.6) enables 

us to draw the following conclusions. 

When Y < 09 the mean transformation degree under unsteady operation conditions is high- 

er than under steady ones (<@>>0),and, as the longitudinal diffusion intensity increases 

(decreasing Peclet number), the unsteady shift increases. 

If O<Y<l, the mean transformation degree is lower under unsteady conditions than 

under steady ones (<A5><0), and as the longitudinal diffusion intensity is increased, the 

absolute value of the unsteady shift (1 <At) 1) increases when O<V <0.5 and falls when 0.5 < 

Y < 1. 
If 1)> 1, the mean transformation degree is higher under unsteady conditions than under 

steady operation conditions, and the unsteady shift decreases as the longitudinal diffusion 

intensity is increased. 
This example shows that the interaction of the system nonlinearity with the longitudinal 

diffusion in a chemical reactor is fairly complex. 
Let us assume for definiteness that the reagent concentration at the reactor intake 

varies in conformity with the law c,(t) = 1 + gsin wt and fl (c) = k,c'. From (3.5) we then have 

<AE) :: c/cl I<,(1 + g sin ot)~> - I] + E’~,*Y (1 - ((1 -t g sin c~t)~~-*)l 52 (P) (3.7) 

The averaged expressions in (3.7) may in some particular cases be represented in terms 

of known functions /ll/. Let y = n, where n is an integer, then 

((1 + g sin tot)“> = (1 - g2)‘f/J P, (+J= +yg &;l-“$(n?;:)!(l-g2)m 

where (E (z) is the integral part of I and P, is a Jacobi' polynomial. 

When y = l/(n + I), we have 

((1 + g sin cot)‘; (“+I))= 1 
(1 _ g”)(“+‘)/z 

p, (I& = ’ 2 “-“;nI;)l,c- i)!! 
P(l~‘g);xq m=O 

The obtained formulas enable us to directly determine the unsteady shift of 

formation degree for certain classes of kinetic dependence. 
If the perturbations of input concentration are small, i.e. when Cf (t) = 1 

where Se 1, then from (3.5) we obtain 

the trans- 

t 6g, sin ot, 

<A5> = e [6’g?D1 + 0 (6”)l + ez[62g,*D, + 0 (P)], Dl=+$(l,, Lb--pg(l)R(P) (3.8) 
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from which for e=& we have 

(AE) = e3g13D, + @g,2D, + 0 (es) 

To illustrate the above conclusions we shall consider a reaction of order Y for which 

we have 
D&=$&(y), Dz =Fdz(y,P), d, (v) = Y (y - I), d, (1’3 P) = -4y. (v - V,) (7 - 1) Q(P) 

Curves d,(y) and &(I', P) appearing in Fig.3 for 

several P&let numbers show the effect of longitudinal 

diffusion effect on the magnitude of the unsteady shift. 

It will be seen that in conformity with the conclusions 

reached above, the unsteady shift may increase, as well as 

decrease, depending on the reaction order, when the long- 

itudinal diffusion intensity is increased. 

This analysis shows the complexity of the longitudinal 

diffusion effect of a chemical reactor operating under 

unsteady conditions, and that the nature of that effect is 

essentially determined by the kinetics and the rate of the 

chemical reaction. 
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